Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method
نویسندگان
چکیده
Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.
منابع مشابه
Characterisation of a Marine Bacterium Vibrio Brasiliensis T33 Producing N-acyl Homoserine Lactone Quorum Sensing Molecules
N-acylhomoserine lactones (AHL) plays roles as signal molecules in quorum sensing (QS) in most Gram-negative bacteria. QS regulates various physiological activities in relation with population density and concentration of signal molecules. With the aim of isolating marine water-borne bacteria that possess QS properties, we report here the preliminary screening of marine bacteria for AHL product...
متن کاملSensitive whole-cell biosensor suitable for detecting a variety of N-acyl homoserine lactones in intact rhizosphere microbial communities.
To investigate quorum sensing in rhizosphere soil, a whole-cell biosensor, Agrobacterium tumefaciens(pAHL-Ice), was constructed. The biosensor responded to all N-acyl homoserine lactones (AHLs) tested, except C(4) homoserine lactone, with a minimum detection limit of 10(-12) M, as well as to both exogenously added AHLs and AHL-producing bacterial strains in soil. This highly sensitive biosensor...
متن کاملOccurrence of N-Acyl Homoserine Lactones in Extracts of Bacterial Strain of Pseudomonas aeruginosa and in Sputum Sample Evaluated by Gas Chromatography–Mass Spectrometry
This study presents a fast, accurate and sensitive technique using gas chromatography-mass spectrometry (GC-MS) for the identification and quantification of N-acyl homoserine lactones (AHLs) in the extracts of bacterial strain of Pseudomonas aeruginosa and sputum sample of a cystic fibrosis patient. This method involves direct separation and determination of AHLs by using GC-MS as simultaneous ...
متن کاملEngineering of new prodigiosin-based biosensors of Serratia for facile detection of short-chain N-acyl homoserine lactone quorum-sensing molecules.
Many Gram-negative bacteria use quorum sensing (QS) to regulate expression of multiple genes, by utilizing small diffusible signalling molecules called N-acyl homoserine lactones (acyl-HSLs). Serratia sp. ATCC 39006 produces the red pigment prodigiosin under QS control, in response to the short-chain signal C4-HSL. In this study, we have demonstrated that an acyl-HSL-deficient mutant can be use...
متن کاملIdentification of N-acyl-l-homoserine lactones produced by non-pigmented Chromobacterium aquaticum CC-SEYA-1T and pigmented Chromobacterium subtsugae PRAA4-1T
Many members of the genus Chromobacterium produce violacein, a characteristic purple pigment which is induced by small diffusible N-acyl homoserine lactones (AHL) quorum-sensing molecules. In this study, the production of AHL of the non-pigmented C. aquaticum CC-SEYA-1(T) and the pigmented C. subtsugae PRAA4-1(T) were determined by using a CV026 biosensor assay. The profile of AHL was identifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017